Sprache auswählen

Düngermenge

  • Dünger: Berechnung von Nährstofflösungen

    Orchilla Guano
    By Boston Public Library, license CC BY 2.0

    Die Berechnung der Düngermenge, die den Nährlösungen zugesetzt werden muss, ist Teil einer erfolgreichen hydroponischen Produktion. Für die Berechnungen werden nur Multiplikation, Division und Subtraktion verwendet; es sind keine fortgeschrittenen mathematischen Kenntnisse erforderlich.

    Wenn Sie mehr über die Zusammensetzungen und Konzentrationsangaben wissen wollen kann die Artikelreihe zu Stöchiometrie und ein Blick auf die Umrechnung von Mol und Gramm bei der Konzentrationsangabe der einzelnen Elemente und Verbindungen hilfreich sein die Komplexität der Thematik besser zu verstehen.

    Wenn Sie das allgemeine Verfahren beherrschen, ist die Herstellung von Nährstofflösungen und die Anpassung der Nährstoffmengen ein Kinderspiel.

    Düngemittelrezepte für Hydrokulturen werden fast immer in ppm (in der Langform: Teile pro Million) angegeben. Dies kann sich von den Düngeempfehlungen für den Gemüse- und Obstanbau im Freiland unterscheiden, die im Allgemeinen in lb/acre (pounds per acre) angegeben werden.

    Als erstes müssen Sie ppm in mg/l (Milligramm pro Liter) umrechnen, indem Sie diesen Umrechnungsfaktor verwenden: 1 ppm = 1 mg/l (1 Teil pro Million entspricht 1 Milligramm pro Liter). Wenn zum Beispiel in einem Rezept 150 ppm Stickstoff gefordert werden, entspricht das 150 mg/l oder 150 Milligramm Stickstoff in 1 Liter Bewässerungswasser.

    In Rezepten für Nährstofflösungen werden auch ppm P (Phosphor) und ppm K (Kalium) verwendet. Dies unterscheidet sich auch von den Düngeempfehlungen für den Gemüse- und Obstanbau auf dem Feld, bei denen P2O5 (Phosphat) und K2O (Kali) verwendet werden. Die Düngemittel werden auch als Phosphat und Kali angegeben. Phosphat und Kali enthalten Sauerstoff, der bei hydroponischen Berechnungen berücksichtigt werden muss. P2O5 enthält 43% P und K2O enthält 83% K.

    Lassen Sie uns die bisherigen Gegebenheiten überprüfen:

    1 ppm = 1 mg/l
    P2O5 = 43% P
    K2O = 83% K

     

    Nährstofflösungstanks werden in den Vereinigten Staaten normalerweise in gal (Gallonen) gemessen. Wenn wir ppm in mg/l umrechnen, arbeiten wir mit Litern. Um Liter in Gallonen umzurechnen, verwenden Sie den Umrechnungsfaktor von 3,78 l = 1 gal (3,78 Liter entsprechen 1 Gallone). Weiter unten ist die Rechnung auch für kontinentale Interessenten angegeben.

    Je nach der Waage, die Sie zum Wiegen von Düngemitteln verwenden, kann es nützlich sein, Milligramm in Gramm umzurechnen: 1.000 mg = 1 g (1.000 Milligramm entsprechen 1 Gramm). Wenn Ihre Waage in Pfund misst, sollten Sie diese Umrechnung verwenden: 1 lb = 454 g (1 Pfund = 454 Gramm).

     

    Fassen wir diese Gegebenheiten zusammen:

    3,78 l = 1 Gallone
    1000 mg = 1 g
    454 g = 1 lb


    Jetzt haben wir alle notwendigen Gegebenheiten. Schauen wir uns ein Beispiel an.

    Wie bestimmt man, wie viel 20-10-20-Dünger benötigt wird, um 150 ppm N mit einem 5-Gallonen-Tank und einem Düngerinjektor zu liefern, der auf eine Konzentration von 100:1 eingestellt ist?

    Schreiben Sie zunächst die Konzentration auf, von der Sie wissen, dass Sie sie erreichen wollen. In diesem Fall sind es 150 ppm N oder 150 mg N/l.

     150 mg N / 1 L Wasser

    Beachten Sie, dass wir mit 1 multiplizieren. So können Sie die Einheiten, die im Zähler und im Nenner gleich sind, aufheben. Jetzt können wir "mg N" streichen und erhalten die Einheit g N/l Wasser.

    150mg1LWasser 3

    Setzen Sie diesen Prozess fort, indem Sie Liter in Gallonen umrechnen. Die meisten Gebinde werden immerm noch in Gallonen (3,78 Liter) gehandelt. Unterhaltsam hierbei: das Metrische System wurde von den Britten erfunden. Wollen Sie ein metrisches Ergebnis, lassen Sie diesen Rechenschritt weg.

    150mg1LWasser 5

    Jetzt bleiben nur noch Gramm Stickstoff pro Gallone Wasser übrig.
    Wir kommen der Sache näher. Nun wollen wir Gramm Stickstoff in Gramm Dünger umrechnen. Denken Sie daran, dass unser Dünger ein 20-10-20 ist, was bedeutet, dass er 20 % Stickstoff enthält. Man kann sich das so vorstellen, dass 100 Gramm Dünger 20 Gramm Stickstoff enthalten. 

    150mg1LWasser 6

    Wo stehen wir also jetzt? Wir haben berechnet, wie viel Gramm Dünger in jeder Gallone Bewässerungswasser benötigt werden. Im Moment haben wir eine normal starke Lösung. Unser Beispiel fordert uns auf, eine konzentrierte Lösung von 100:1 zu berechnen. Das bedeutet, dass für jede 100 Gallonen Wasser, die ausgebracht werden, auch 1 Gallone Stammlösung über einen Düngerinjektor ausgebracht wird. Wir wissen auch, dass unser Vorratstank 5 Gallonen fasst. Unten siehe Berechnung für metrisches System (Liter).

     

    In Gallonen

    150mg1LWasser 8

     

    Im Taschenrechner: 150 x 1 : 1000 x 3.78 x 100 : 20 x 100 x 5 ist 1417,5 Gramm auf 5 Gallonen Wasser (im Vorratstank)

    Nachdem wir alles abgezogen haben, bleibt uns ein Gramm Dünger übrig. Das ist die Menge an Dünger, die wir in unseren Vorratstank geben müssen, um 150 ppm N bei einer Konzentration von 100:1 auszubringen. Multiplizieren und teilen Sie und Sie erhalten die Antwort 1417,5 Gramm Dünger.

     

    In Litern

    150mg1LWasser de

    Im Taschenrechner: 150 x 1 : 1000 x 100 : 20 x 100 x 10 ist 1500 Gramm auf 10 Liter Wasser (im Vorratstank)

     

    Nachdem wir alles abgezogen haben, bleibt uns ein Gramm Dünger übrig. Das ist die Menge an Dünger, die wir in unseren Vorratstank geben müssen, um 150 ppm N bei einer Konzentration von 100:1 auszubringen. Multiplizieren und teilen Sie und Sie erhalten die Antwort 750,0 Gramm Dünger.

    Das bedeutet, dass für jede 100 Liter Wasser, die ausgebracht werden, auch 1 Liter Stammlösung über einen Düngerinjektor ausgebracht wird. Wir wissen auch, dass unser Vorratstank 10 Liter fasst. 

    Wenn wir in Pfund messen, müssen wir 0,75 kg / 1,15 lb Dünger in unseren Vorratstank geben, um 150 ppm N mit einer Konzentration von 100:1 auszubringen.

    Sie haben gerade eine der beiden Gleichungen fertiggestellt. Schauen wir uns nun die andere an.

    Wir haben gerade festgestellt, dass wir 750 Gramm Dünger hinzufügen müssen, um 150 ppm Stickstoff bei einer Konzentration von 100:1 zu liefern. Der von uns verwendete Dünger war ein 20:10:20. Zusätzlich zum Stickstoff fügen wir also auch Phosphor und Kalium hinzu. Mit der nächsten Gleichung bestimmen wir, wie viel Phosphor wir zuführen. Dies ist im Grunde die Umkehrung der ersten Berechnung.

    Wir beginnen mit der Menge an Dünger, die wir in unseren Tank geben. Die endgültigen Einheiten sind ppm oder mg/l. Wie bei der vorherigen Berechnung verwenden wir unsere Vorgaben, bis wir diese Einheiten erhalten.

    1417gDuengerWasser 0

    Multiplizieren Sie mit der Konzentration der Nährlösung.

    1417gDuengerWasser 2

    Multiplizieren, um in Liter umzurechnen.

    1417gDuengerWasser 3

    Als Nächstes rechnen Sie Milligramm Düngemittel in Milligramm Phosphat um.

     1417gDuengerWasser 4

    Als Nächstes werden wir Gramm Phosphat in Gramm Phosphor umrechnen, wobei wir davon ausgehen, dass Phosphat 43 % Phosphor enthält.

    1417gDuengerWasser 5

    Zum Schluss rechnen wir Gramm Phosphor in Milligramm Phosphor um.

    1417gDuengerWasser 6

    Wenn wir dies berechnen, stellen wir fest, dass wir 32,25 mg/l P oder 32,25 ppm P hinzugefügt haben. Dies ist die zweite Gleichung. Wir können sie auch verwenden, um zu bestimmen, wie viel Kalium wir hinzugefügt haben. 

    1417gDuengerWasser 7

    Wir haben 124,5 mg/l K oder 124,5 ppm K hinzugefügt.

    Mit diesen beiden grundlegenden Berechnungen können Sie jedes beliebige Nährlösungsrezeptprogramm verwenden. Wie sie zur Berechnung eines Rezepts verwendet werden, können Sie in diesem Artikel sehen:

     

    Hier finden Sie eine Beispielrezeptur und wie sie berechnet wird.


    Kontext: 

    ID: 154

    URL
  • Nährstofflösungen (Hydroponische) Lösungen

    Laboratory
    Queensland State Archives, Digital Image ID 1857
    Hydroponische Lösungen sind eine zentrale Komponente des hydroponischen Anbaus, bei dem Pflanzen in einem erdlosen System wachsen und ihre Nährstoffe direkt aus einer wässrigen Lösung beziehen. Diese Lösungen enthalten alle essentiellen Makro- und Mikronährstoffe, die Pflanzen für ihr Wachstum benötigen. Die wichtigsten Makronährstoffe umfassen Stickstoff (N), Phosphor (P), Kalium (K), Calcium (Ca), Magnesium (Mg) und Schwefel (S), während die Mikronährstoffe Eisen (Fe), Mangan (Mn), Zink (Zn), Kupfer (Cu), Bor (B) und Molybdän (Mo) beinhalten.
     
    Eine hydroponische Lösung muss sorgfältig formuliert werden, um das optimale Verhältnis dieser Nährstoffe zu gewährleisten, damit Pflanzen gesund wachsen und hohe Erträge liefern. Der pH-Wert der Lösung ist ebenfalls entscheidend und sollte im Bereich von 5.5 bis 6.5 liegen, um die Nährstoffaufnahme zu maximieren.
    Es gibt verschiedene Arten von hydroponischen Systemen, wie das NFT (Nutrient Film Technique), Deep Water Culture (DWC), und aeroponische Systeme, die alle auf die Verwendung von hydroponischen Lösungen angewiesen sind. Die genaue Zusammensetzung der Lösung kann je nach Pflanzenart, Wachstumsstadium und spezifischen Bedingungen variieren.
     
    Ein Rechner für Hydroponische Lösungen findet sich etwa unter HydroBuddy oder HydroCal.
     

    Element Rolle Ionenform (en) Niedriger Bereich (ppm) Hoher Bereich (ppm) Gemeinsame Quellen Kommentar
    Stickstoff Essentieller Makronährstoff
    NO-3 
    oder 
    NH+4
    100 1000 KNO 3, NH 4 NO 3, Ca (NO 3) 2, HNO 3, (NH 4) 2 SO 4 und (NH 4) 2 HPO 4 NH+4stört die Ca2+-Aufnahme und kann für Pflanzen toxisch sein, wenn sie als Hauptstickstoffquelle verwendet wird.Ein 3:1-Verhältnis von NO-3 -N zu NH+4-N (Gew.-%) wird manchmal empfohlen, um den pH-Wert während der Stickstoffabsorption auszugleichen.Pflanzen reagieren je nach Form des Stickstoffs unterschiedlich, z. B. hat Ammonium eine positive Ladung, und somit stößt die Pflanze ein Proton aus (H. + ) für jeden NH + 4 aufgenommen, was zu einer Verringerung des Rhizosphären-pH führt.Bei Lieferung mit NO - 3 Das Gegenteil kann eintreten, wenn die Pflanze Bicarbonat (HCO) freisetzt - 3 ), der den pH-Wert der Rhizosphäre erhöht.Diese Änderungen des pH-Werts können die Verfügbarkeit anderer pflanzlicher essentieller Mikronährstoffe (z. B. Zn, Ca, Mg) beeinflussen.
    Kalium Essentieller Makronährstoff K + 100 400 KNO 3, K 2 SO 4, KCl, KOH, K 2 CO 3, K 2 HPO 4 und K 2 SiO 3 Hohe Konzentrationen beeinträchtigen die Funktion Fe, Mn und Zn.Zinkmängel sind häufig am offensichtlichsten.
    Phosphor Essentieller Makronährstoff PO3− 4 30 100 K 2 HPO 4, KH 2 PO 4, NH 4 H 2 PO 4, H 3 PO 4 und Ca (H 2 PO 4) 2 Überschüssiges NR-3neigt dazu, PO zu hemmen 3− 4 Absorption.Das Verhältnis von Eisen zu PO 3− 4 kann Co-Präzipitationsreaktionen beeinflussen.
    Kalzium Essentieller Makronährstoff Ca 2+ 200 500 Ca (NO 3) 2, Ca (H 2 PO 4) 2, CaSO 4, CaCl 2 Überschüssiges Ca 2+hemmt die Mg 2+-Aufnahme.
    Magnesium Essentieller Makronährstoff Mg 2+ 50 100 MgSO 4 und MgCl 2 Sollte die Ca 2+-Konzentration aufgrund der kompetitiven Aufnahmenicht überschreiten.
    Schwefel Essentieller Makronährstoff SO 2− 4 50 1000 MgSO 4, K 2 SO 4, CaSO 4, H 2 SO 4, (NH 4) 2 SO 4, ZnSO 4, CuSO 4, FeSO 4 und MnSO 4 Im Gegensatz zu den meisten Nährstoffen können Pflanzen eine hohe Konzentration des SO tolerieren 2− 4selektives Absorbieren des Nährstoffs nach Bedarf.Es tretenjedoch immer nochunerwünschte Gegenioneneffekte auf.
    Eisen Essentieller Mikronährstoff Fe 3+und Fe 2+ 2 5 Fe DTPA, Fe EDTA, Eisen - Citrat, Eisen -Tartrat, FeCl 3, Eisen -III -EDTA und FeSO 4 pH- Werte über 6,5 verringern die Eisenlöslichkeit stark. Chelatbildner (z. B. DTPA, Zitronensäure oder EDTA) werden häufig zugesetzt, um die Eisenlöslichkeit über einen größeren pH-Bereich zu erhöhen.
    Zink Essentieller Mikronährstoff Zn 2+ 0,05 1 ZnSO 4 Überschüssiges Zink ist für Pflanzen hochgiftig, aber für Pflanzen in geringen Konzentrationen essentiell.
    Kupfer Essentieller Mikronährstoff Cu 2+ 0,01 1 CuSO 4 Die Empfindlichkeit der Pflanzen gegenüber Kupfer ist sehr unterschiedlich.0,1 ppm können für einige Pflanzen toxisch sein, während eine Konzentration von bis zu 0,5 ppm für viele Pflanzen oft als ideal angesehen wird.
    Mangan Essentieller Mikronährstoff Mn 2+ 0,5 1 MnSO 4 und MnCl 2 Die Aufnahme wird durch einen hohen PO erhöht 3− 4 Konzentrationen.
    Bor Essentieller Mikronährstoff B (OH)- 4 0,3 10 H 3 BO 3 und Na 2 B 4 O 7 Einige Pflanzen sind jedoch ein essentieller Nährstoff und reagieren sehr empfindlich auf Bor (z. B. treten bei Zitrusbäumen bei 0,5 ppmtoxische Wirkungenauf).
    Molybdän Essentieller Mikronährstoff Mn- 4 0,001 0,05 (NH 4) 6 Mo 7 O 24 und Na 2 MoO 4 Ein Bestandteil des Enzyms Nitratreduktase, der von Rhizobien zur Stickstofffixierung benötigt wird.
    Nickel Essentieller Mikronährstoff Ni 2+ 0,057 1.5 NiSO 4 und NiCO 3 Unentbehrlich für viele Pflanzen (z. B. Hülsenfrüchte und einige Getreidepflanzen).Wird auch im Enzym Urease verwendet.
    Chlor Variabler Mikronährstoff Cl - 0 Sehr variabel KCl, CaCl 2, MgCl 2 und NaCl Kann NO stören - 3 Aufnahme in einigen Pflanzen, kann aber in einigen Pflanzen von Vorteil sein (z. B. in Spargel bei 5 ppm).Fehlt in Nadelbäumen, Farnen und den meisten Bryophyten.
    Aluminium Variabler Mikronährstoff Al 3+ 0 10 Al 2 (SO 4) 3 Unentbehrlich für einige Pflanzen (z. B. Erbsen, Mais, Sonnenblumen und Getreide ).Kann für einige Pflanzen unter 10 ppm toxisch sein.Wird manchmal zur Herstellung von Blütenpigmenten verwendet (z.B. von Hortensien ).
    Silizium Variabler Mikronährstoff SiO 2− 3 0 140 K 2 SiO 3, Na 2 SiO 3 und H 2 SiO 3 In den meisten Pflanzen vorhanden, reichlich in Getreide, Gräsern und Baumrinde.Beweis, dass SiO 2− 3 verbessert die Resistenz gegen Pflanzenkrankheiten.
    Titan Variabler Mikronährstoff Ti 3+ 0 5 H 4 TiO 4 Könnte essentiell sein, aber Spuren von Ti 3+sind so allgegenwärtig, dass seine Zugabe selten gerechtfertigt ist.Bei 5 ppm sind günstige Wachstumseffekte bei einigen Kulturen bemerkenswert (z. B. Ananas und Erbsen).
    Kobalt Nicht essentieller Mikronährstoff Co 2+ 0 0,1 CoSO 4 Erforderlich bei Rhizobien, wichtig für die Knötchenbildung von Hülsenfrüchten.
    Natrium Nicht essentieller Mikronährstoff Na + 0 Sehr variabel Na 2 SiO 3, Na 2 SO 4, NaCl, NaHCO 3 und NaOH Na +kann K +in einigen Pflanzenfunktionenteilweise ersetzen,aber K +ist immer noch ein essentieller Nährstoff.
    Vanadium Nicht essentieller Mikronährstoff VO 2+ 0 Spur, unbestimmt VOSO 4 Vorteilhaft für die rhizobielle N 2 -Fixierung.
    Lithium Nicht essentieller Mikronährstoff Li + 0 Unbestimmt Li 2 SO 4, LiCl und LiOH Li +kann den Chlorophyllgehalt einiger Pflanzen (z. B. Kartoffel- und Pfefferpflanzen )erhöhen.
     
    Quelle:  CC BY-SA 3.0 via https://de.wikibrief.org/wiki/Hydroponics

    Kontext: 
    ID: 580
    URL
  • Tomaten Richtwerte

    Düngung von Tomaten in Hydro- bzw. Substratkultur

    Die folgenden Richtwerte sind aus einer Masterarbeit der Fachhochschule Südwestfalen entnommen. Link siehe unten.


    Düngung von Tomaten in Substratkulturen erfolgt oft nach Werten die in mmol/l angegeben sind. Um sie etwas verständlicher darzustellen, sind die Richtwerte zusätzlich in g/l umgerechnet. In der folgenden Tabelle ist ein Überblick über den Bedarf an Anionen, Kationen und Spurenelementen von Tomaten dargestellt.

    Beispiele wie Mol in Gramm und umgekehrt berechnet werden finden Sie hier.

    Grenzen mmol/l
       
     Richtwert bei 3,7 EC in mmol/l
     Richtwert in g/l (gerundet)  von bis
    NO3 Nitrat 23 1.426 13 25
    Cl Chlorid     1 6
    S Schwefel 4 0.128 3.5 6.5
    HCO3 Bicarbonat 0.5 0.030 0.1 1
    P Phosphor 1.3 0.03 0.5 1.5
    NH4 Ammonium < 0.2 0.003 0.1 0.5
    K Kalium 8 0.312 5 10
    Na Natrium     1 6
    Ca Calcium 8 0.320 5 10
    Mg Magnesium 4 0.097 2.5 5
    Si Silizium        
    Fe Eisen 25 0.001 9 30
    Mn Mangan 7 0.0004 3 10
    Zn Zink 4 0.0004 5 10
    B Bor 75 0.0053 26 80
    Cu Kupfer 1 0.000064 0.5 1.5
    Mo Molybdän 0.5 0.000048    
               
    Pepper, tomato, celery, and beans.
    Vaughan's Seed Store (1906) 

     

     

    Grundsätzlich wird der Anbau von Tomaten als Substratkulturen folgendermaßen durchgeführt:

    - Ansetzen der Setzlinge im Dezember/Januar

    - Veredlung der Setzlinge:
       - Köpfen nach dem 3 Blatt  1 Samen = 2 Triebe (Saatgutkosten sparen)
       - Evtl. erneutes Köpfen nach dem 6. Blatt möglich

    - Es werden kontinuierlich Triebe geerntet, welche Tomaten tragen

    - Pro Jahr etwa 30 Ernten

    - Ernte pro Strauch: 600 g Tomaten
       - 600 g x 2,5 Pfl./m2 x 30 Ernten = 45 kg Tomaten / m2
       - Für 20m² Gewächshaus 900 kg Tomatenernte / Jahresernte

     

    Folgende Punkte sind bei der Düngung von Tomaten in Substratkulturen zu beachten:

    - Generell müssen für die Nährstoffe eine A- und B-Lösung hergestellt werden.

    - Beide Lösungen dürfen nicht zeitgleich in das Wasser gegeben werden, da es sonst zu Gipsbildung bzw. Ausfällung kommt (hoher Calcium-Gehalt)

    - Eine Düngergabe erfolgt i. d. R. nach Einstrahlungswerten (LUX)
       - 20 bis 30 Starts bei hoher Sonneneinstrahlung im Sommer, z. B. 100 cm3/Pflanze bei ca. 20 kg
       - 2 bis 3 Starts bei Dunkelheit (Februar/März)

    - In der Startphase benötigen Tomaten alle 8 h 50 cm3/Pflanze

    -  Ansonsten 3 bis 5 l/Pflanze im Hauptwachstum

    -  Für den Geschmack ist ein hoher Salzgehalt nötig
       - Tragen die Tomatensträucher keiner Früchte, ist weniger Kalium zu düngen

    -  Ammonium wird nur zum Stabilisieren des pH-Wertes in der Matte gegeben

    -  Kalium und Calcium sollen in einem Verhältnis von 1:1 in der Matte oder im Dränwasser vorliegen

     - Wenn mit einem geschlossenen System kultiviert wird, werden für die Nährlösung 8 mmol K und 4 bis 5 mmol Ca empfohlen

     -  Die Schwefelgehalte können in der Nährlösung auf 2 mmol gesenkt werden.

     - In Tomatenkulturen werden Anpassungen an den Entwicklungsstand der Kultur vorgenommen (s. nachfolgende Tabelle):

     

    Nährstoff Startphase Ertragsphase
      reduzieren gleich zusätzlich reduzieren gleich zusätzlich
    NO3   -     -  
    K -1.5         +1
    Ca     +1 -0.5    
    B     +20      
    Fe           +10

     

    Kosten der Düngung:

    1300 l Wasser pro m2 / Jahr werden benötigt (davon 300 l wiederverwertbar als Prozesswasser)
    das entspricht 1,3 m3 Wasser/m2 

    1 m3 Wasser = 0,30 € - 1,00 €
    für die Nährlösung werden folgende Werte angenommen:
    Preis Dünger je m3 Wasser = 1,00 € - 1,20 €

    Umgerechnet auf 2,5 Pflanzen pro mergeben sich Düngungskosten von ca. 1,70 € bis 2,90 € pro m/ Jahr.
    Für eine exakte Düngebedarfsrechnung kann ein Programm genutzt werden, welches im Folgenden verlinkt ist:
    http://www.haifagroup.com/Dutch/knowledge_center/expert_sofwares/


    Fazit

    Systeme
    Es gibt unterschiedliche Hydrokultursysteme, die nach verschiedenen Kriterien betriebsindividuell ausgewählt werden müssen. Welche Kultur/en sollen angebaut werden, welche finanziellen Mittel stehen zur Verfügung und welche Arbeitszeit kann/soll eingebracht werden? Für die Kombination eines Systems mit einer Aquakultur eignen sich vor allem N.F.T. oder Ebb and flow auf Grund der einfachen Struktur und einem abgetrennten Bereich für die Nährlösung.


    Prozesswasser
    Mit Hilfe der Futterzusammensetzung ist die Grundlage gegeben, um die theoretische Wasserbelastung und die für die Hydrokultur zur Verfügung stehenden Nährstoffe abzuschätzen. Die anfallenden Nährstoffmengen sind aber variabel und abhängig von der Futterzusammensetzung (Höhe des XPGehaltes), der Fütterungsintensität, den Besatzdichten (kg/m³) und der Verteilung der Fütterungsintervalle über den Tag. Durch eine 24 StundenFütterung sind Schwankungen in der Wasserbelastung zu senken und damit wird ein gleichmäßigerer Wasserdurchfluss/Wasseraustausch ermöglicht.
    Die gesamte Ammoniumstickstoffproduktion setzt sich zusammen aus 51,3 % des enthaltenen N/kg Futter als nicht fäkale Verluste und 9,4 % des enthaltenen N/kg Futter als fäkale Verluste. Die restlichen 39,3 % des enthaltenen N/kg Futter werden für das Wachstum der Fische verbraucht. Ziel der Modellrechnung ist es, die Nitratmenge (g) im Wasser bei unterschiedlichen
    Besatzdichten der Fische möglichst exakt zu errechnen, um anfallende Stickstoffmenge abschätzen zu können. Dafür wurden unterschiedliche Faktoren einbezogen und als Variablen in einer Tabelle verwendet. Bei einer
    Futterintensität von 3 % ergibt dies eine Mastdauer von 147 Tagen. Dabei bildet insbesondere eine intensive Besatzdichte (450 kg/1,5m³) sehr hohe Nitratmenge. Während eine geringe Besatzdichte (75 kg/1,5m³) nicht annähernd diese Menge hervor bringt. Die hat zur Folge, dass die Nitratmengen sehr variieren.

     

    Nährstoffversorgung

    Die Düngung in Hydrokulturen orientiert sich an Richtwerten für bestimmte Salzgehalte im Wasser. Diese Salzgehalte sind durch den EC-Wert (Elektronische Konduktivität) beschrieben. Ein EC-Wert von 3,7 ist im Durchschnitt ein repräsentativer Richtwert. Dafür entsprechend werden die Nährstoffe berechnet. Die Nährstoffzugabe erfolgt in zwei Schritten, A und B Lösung. Damit wird ein Verklumpen (Vergipsung) der Nährlösung verhindert. Entsprechend der Pflanzenentwicklung wird die Nährstoffmenge angepasst. Im Durchschnitt liegt die Nährstofflösungsmenge bei 3-5 l je Pflanze im Hauptwachstum.


    Schlussfolgerung:

    I) Pflanzen
    Nitratbedarf: 1,426 g/l NO3
    Pflanzenmenge: 5 l/Pflanze
    Anzahl Pflanzen: 2,5 Pflanzen/m²
    Gesamtfläche: 20 m²
    Rechnung (1): 1,426 g/l NO3 * 5 l/Pflanze * 2,5 Pflanzen/m² * 20 m² = 356,5 g NO3/Jahr u. Gesamtfläche

    II) Prozesswasser
    Annahme: 75 kg/ Becken
    Nitratmenge: 312,14 g aus drei Becken
    Masttage: 147
    Durchgänge: 365 : 147 = 2,5
    Rechnung (2): 2,5 Durchgänge * 312,14 g NO3/Jahr u. Gesamtfl. = 780,35 g NO3/Jahr
    Rechnung (3): 780,35 g NO3/Jahr : 356,5 g NO3/Jahr u. Gesamtfl. = 2,19

    Bei einer Besatzdichte von 75 kg/ Becken steht zurzeit 2,19-mal so viel Nitrat zur Verfügung wie die Tomaten benötigen.

    III) Empfehlung:
    Rechnung (4): 75 kg/ Becken : 2,19 = 34,25 ~ 34 kg/ Besatzdichte
    Für die benötigte Nitratmenge der Pflanzen bei einer Gesamtfläche von 20 m² ist eine Besatzdichte der Fische von 34 kg als empfehlenswert anzusehen.

     


    Quelle: https://www.fh-swf.de/media/neu_np/fb_aw_2/dozentinnen/professorinnen_2/lorleberg/projekte_masterstudiengang/Report_Planung_Aquaponik-Demonstrationsanlage_2015.pdf

    Kontext:

    ID: 383

Das Unternehmen